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Synopsis
The sct of solutions to the two-parameter system

—(p()’) +q (e =Aau +f(u, v)ul .
—-(pz‘(x)v')' + qll(x)u =nv + gy, u)v} in (a, b),

i(a) = u(by=0=uv(a) =v(b),

has been shown in a preceding paper of the author to exhibit a topological-functional analytic
structure analogous to the structure of solution sets for nonlincar Sturm-Liouville boundary value
problems. As the parameter A and u are varied, transitions in the solution set occur, first from trivial
solutions to solutions (1, 0) with u having n nodes on (a, b) or solutions (0, v) with v having m nodes
on (a, b), and.then to solutions of the form (u, v), where u has n nodes on (a, b) and v has m nodcs
on (a, b), with n possibly different from m. Moreover, each iransition is global in an appropriate
bilurcation thcorctic scnse, with preservation of nodal structure. This paper explores these
phenomena more closely, focusing on the range of parameters (A, p) for the existence of solutions
(12, v) with u having n nodes on (a, b) and v having m nodes on (a, b) and its dependence on the
assumptions placed on the coupling functions f and g. The principal tools of the analysis are the

Alexander—Antman Bifurcation Theorem and a priori estimate techniques based on the maximum

principle.

1. Introduction and examples

| In a recent paper [4], the present author noted the existence of certain special
. types of continua of solutions to systems of boundary value problems of the form

Lu=—(pxu") +qx)u= Au -+ f(u, v)u,

(1.1)
Lou=—(po(x)v') +qa(x)v = pv + g(u, v)v,

‘where x € (a, b), and u and v are required to satisfy zero dirichlet boundary
‘conditions. The functions p; and g; are assumed to be positive and continuously
differentiable and positive and continuous on [a, b], respectively, for i=1,2,
vhile f, g: R*—R are assumed twice continuously differentiable with f(0, 0)=
' =g(0, 0). Then, under mild additional assumptions on f-and g, if a pair (n, m)
f positive integers and a pair (o, t) of sign orientations (o, T € {+, —}) are
secified, there is a connected set @, 0, Of solutions to (1.1) in R? X [Cifa, D]T?
hich is locally compact, of dimension =2 at every point, and such that if

this work was partially supported by the National Science Foundation under grant DMS-8802346.

1
|
!
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(A, 1, 1, v) € B,y 0,0 then u has i1 — 1 simple zeros in (a, b), sgnu’(a) =0, v has
m — 1 simple zeros in (a, b), and sgnv'(a) = 7. The existence of such solution sets
to (1.1) depends in a crucial way on the generalised Lotka—Volterra structure of
(1.1). Witness that if (4, 1) solves the single equation

Lyu=Au+f(u, QOu (1.2)

on (a, b) with u =0 at a and at b, then (A, g, u, 0) is a solution of (1.1) for any
€ R. Consequently, to any continuum of dimension =1 of solutions to (1.2) in
R % Ci[a, b], there is a corresponding continuum of dimension =2 of solutions to
(1.1) in R®*X[Ci[a, b]], where p is “free” and v=0. Hence, by the
Krasnosel’skii—Rabinowitz Bifurcation Theorem, there is a continuum €,.0.0 Of
dimension Z2 of solution to (1.1) with v=0, u having n —1 simple zeros in
(a,b), and sgnu'(a) = o emanating in R?x [Cl[a, b]] from R? x {(0,0)} along
the line A = A, where 4, is the unique eigenvalue of the linear problem

Lyw=2w in (a, b),
w(a)=0=w(b),

admitting an eigenfunction with n — 1 simple zeros on (a, b) and sgnw'(a) = o.
Under appropriate technical assumptions on f, a set 6, ,, ... as described can be
achieved as a bifurcation from 6.0, by viewing €,,, as a set of “trivial”
solutions and invoking the Alexander—Antman Multiparameter Bifurcation
Theorem. Analogously, sets €,,.m.0.« Can also be obtained via secondary bifurca-
tion from solution continua Co,m,- With =0, v having m — 1 simple zeros on
(a, b), and sgnv'(a) = 1.

Some natural questions arise. Since there is more than one succession of
primary and secondary bifurcations that lead to a set €...m.0,1, Can there be more
than one such set? If one of the parameters A or u is held fixed while the other is
allowed to vary freely, is there a set €,,m.0.. that provides a link between
solutions to (1.1) with u=0 and v having m'— 1 simple zeros in (a, b) with
sgnv’(a) = v and solutions to (1.1) with 1 having n — 1 simple zeros in (a, b) with
sgnu'(a) = o and v =07 What is the projection of G0 into R??

The purpose of this paper is to address these sorts of questions concerning the
sets G, .0..- SOme comment is in order at this point. Firstly, it is clear that the
answers depend very much on the nature of f and g. Indeed in the case n =m = 1
and 0 =7=+, v and v can be interpeted as the steady states to a population
model for two interacting species which are allowed to move freely throughout a
one-dimensional domain. Such problems and their analogues to higher dimen-
sional space domains have been the focus of much recent activity in the
differential equations and mathematical ecology communities. (See, for example,
[2,5-10,12-14, 16] and the reference therein.) The nature of €, , . . in these
articles depends on whether the model is mutualistic, competitive, or predatory.
Consequently, there is no single all-encompassing answer to the particular
questions we are asking about €, ,, ... It is, however possible to identify some
fairly general classes of f and g for which meaningful descriptions of Corm.0x CAN
be given without becoming encyclopaedic. 1 began this process in [4, Section 3],
noting additional assumptions on f and g (and L, and L,) which were sufficient
for 6,0, and €, . to be linked together in R? x [Cl[a, b]J* by 6, ... above a

(1.3)
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path in the parameter space R? parallel to either the A-axis or p-axis. These
assumptions on f and g are included in one of the classes treated in the
subsequent sections of this paper. The extra assumptions on L, and L, in [4] are
due to the use of the Sturm comparison theorem to get a necessary a priori
estimate on the range of parameters for which (1.1) can have solutions (i, v) with
u having n — 1 simple zeros and v having m — 1 simple zeros. The other classes of
problems I want to discuss require a fuller, more flexible use of the power of the
Alexander—Antman results [1]. One consequence of the more topological
methods of this paper is that by taking different kinds of one-dimensional
restrictions of parameter space R?, the extra assumptions on L, and L, in [4,
Section 3] may be eliminated.

The subsequent sections of this article are organised as follows. In Section 2,
classes of assumptions to place on f and g are identified. In Section 3 there follows
the requisite a priori bounds on the [Ci[a, b]? norm of solutions to (1.1). Finally,
in Section 4, bifurcation theoretic arguments are used to address questions on
G,1.m,0.r However, before beginning the analysis, it will be very useful to consider
‘a nontrivial situation where %, 0. can be explicitly described. To this end,
consider the special case of (1.1) given by

1 1
Liu=Au— ( Au?dx + J Bv? dx>u in (0, 1),

o1 ol (1.4)
Lot = v — ( Cu?dx + | Duv? dx)v,

0 0

with zero dirichlet boundary conditions on u and v, where A4, B, C, D are
constants with A, D>0. Let 0<0,<0,<...,0,—> +%® as n—%, denote the
sequence of eigenvalues to the linear problem :

Lyw=ow in (0,1),
w(0) =0=w(l),

with corresponding eigenfunctions w;, i=1,2,..., where w; has i —1 simple
zeros in (0, 1), wi(0)>0 and [§w]dx =1. Likewise, let 0<y;< Y2y Y=
o as m—> o, denote the sequence of eigenvalues to

Lyy=vyy in(0,1),
y(0)=0=y(1),

with corresponding eigenfunctions y;, j=1,2, ..., where y; has j — 1 simple zeros
in (0,1), y;(0)>0, and [4y7dx=1. Then, if u#0 satisfies the boundary value
problem

1
L,z:.-——krl—A(f uzdx>u in (0, 1), (1.5)
0

u(0y=0=u(l),

it is straightforward to see that A — A Jiu?dx = o, for some i 1 and u=sw; for
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some s € R, s # (. It follows that the nontrivial solutions to (1.5) are described by

{(A, + A:laiw,): /1>cr,}

fori=1,2,.... Similarly, the nontrivial solutions to

1

Ly =pv— D(f v? dx)v in (0, 1), (1.6)

0

v(0)=0=u(l),

p=y,
{(u, + 5 ’yi>: "> Vi}

for j=1,2,.... Consequently, (1.4) has solution continua €0+ and 6, .
given by

are given by

71—
{(/1, u, + AG" W, ()): AZo0,, 1e R}

and

H = Ym
{(’1» [l., Ov + ”‘5"“}4,.)5/1 ER, ,U»é)'m},

A-o,
“w, for some A>g,, a

respectively. From [4, Theorem 2.1], if u =+

bifurcation from 4, 4 .. to €, ,, +.+ occurs when
H
(Lz + Cj u? dx)v =puv in (0, 1), (L.7)
i}

v(0)y=0=wv(l),

has an eigenfunction with 1 — 1 simple zeros. Since C [§u®dx = (C/A)(A - 0,),
(1.7) reduces to

Lov = (u+(C/A)(o,—A))v in (0,1),

v =0=v(l).
Hence, the transition occurs along the line segment
[ (C/A)(Un “/1):)’", (18)

where A = 0,. Analogously, a transition from %, .. to 6,1.m, +,+ OCcurs along the
line segment

A-}'(B/l))()/m_:”')=0'm (19)
ft £ y,,. Note that (1.8) and (1.9) can be expressed as
w=(ClAA +vy, —(Cl/A)o,, AZo,, (1.10)

pw=(D/B)+vy,—(D/B)o,, pnZy,,. (1.1
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Let us now describe G, . +,+- SO far, there are no assumptions on the constants
A, B, C, D other than positivity for A and D. I want to consider several
possibilities. First, assume that C, B, and AD — BC are positive. Solving (1.4)
requires that

1
A— (f (Au®+ Bv?) dx) =0,, U=SsW,,
[4]

1
- ( (Cu? + Dv?) dx) =Y, U=
0

Hence A= 0,, 4 =7V, and
As*+ Bt*=A— 0,
Cs*+ D= — Ve
Since AD — BC #0, (1.12) yields
2 D(A—o,)— B - Vo)

(1.12)

N

AD — BC
2= A(!‘ - Ym) - C(A - n)
AD — BC )

Since AD — BC >0, a solution to (1.4) with u having n — 1 simple zeros in (0, 1)
and v having m — 1 simple zeros in (0, 1) is possible only when

DA~ 0,) = B(p—vn)>0,
A —vm)—CA—0,)> 0.

Of course, (1.13) reduces to
(CIAW A+ v — (ClIA)O, <p < (D/B)A+ ¥,, — (D[B)0y, (1.14)

A > 0,. As a consequence, @,y . +.+ 15 given by

. D(A' - U,,) - B(“‘ - Ym) \/7‘(‘“ - Ym) - C()\' - Un) )
W'“’i\f ap—sc ¥ ap—Bc ")

(A, u) satisfies (1.14), A> o,,}. (1.15)

(1.13)

Hence 6, .+« forms a two-dimensional sheet that meets €, 0,+ along the line
segment (1.10) and Go,m,+ along (1.11). (See Figure 1.1.) If now, C and B are
positive while AD — BC <0, the order of the inequalities in (1.14) is reversed.
Consequently, €, x.+ emanates from 4, . via parameter values lying below
the ray (1.10) as opposed to the case AD — BC >0, where 4, + + emanates
from €, 4 via parameter values lying above the ray (1.10). Likewise, K
emanates from €., + via parameter values to the left of ray (1.11), as opposed to
the case AD —BC >0, where €, 4.+ emanates from %o+ via parameter
values lying to the right of ray (1.11). (See Figure 1.2.) Otherwise, the case when

¢, B>0 and AD —BC<0 is very similar to the case when C, B>0 and

AD — BC >0. However, if C,B>0and AD - BC= 0, a noteworthy difference
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Figure 1.1. Projections of the solution continua €., 40 G0 G, fOF (1.4) into A—p
parameter space in the case (A, B, C, D, AD-BC>0).

occurs. It is easy to see, by multiplying the first equation of (1.12) by D and the
second by B and then subtracting, that solutions to (1.4) with u having n -1
simple zeros and v having m — 1 simple zeros occur only when A and p are
constrained to lie on the ray u = (D/B)A+y,, —(D/B)o,, A=0,. In this case,
€, .+« is a two-dimensional sheet above this ray, and the transitions to €,, .+ Or
%@y .+ are, in the language of bifurcation diagrams, “vertical”. 1 note that such a
phenonmenon has been observed under certain conditions by Cosner and Lazer
[7] and Blat and Brown [2] in the context of the steady-state equations for a
competitive Lotka—Volterra model with diffusion.

In any of the cases of (1.4) considered so far, C>0 and B>0, and the
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Figure 1.2. Projections of the solution continua 6o, 4 Croer Cromorx for (1.4) into A—p
parameter space in the case (A, B, Cc,D>0, AD-BC <0).

projection of €,0.+,+ INO R? is contained in {(4, ;L):A>a,,,u>y,,,}, the
ntersection of the projections into R? of %,0.+ and €o,m, = If either B <0 or
C <0, such is not the case. For instance, if B <0 while C >0, then necessarily
AD — BC>0 and the existence of solutions to (1.4) with u having n — 1 simple
zeros in (0, 1) and v having m = | simple zeros in (0, 1) is again equivalent to
(1.13'). However, since B <0, (1.13) in this case reduces to

{u >(D/B)A+Ym— (D/B)o,,

(1.16)
1 > (C.//‘)A + Y =™ (C/A)Gnv
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and €, ,, . . is given by

(2 \/D(A —0.,) ~B(r=7,)
y :t "nr
[\ H AD — BC "

+ \/A(H — ,m) - C(A - Un)
AD — BC

y,,,): (A, p) satisfies (1.16)}. (1.17)

(See Figure 1.3.) If now B<0 and C<O0, then AD — BC can be positive,
negative, or zero. If AD — BC>0, the projection of €, +,+ into R? is again
given. by (1.13), which in this case yields (1.16). (See Figure 1.4} If now
AD — BC <0, the inequalities in (1.13) must be reversed and the projection of

H=(D/B)A+y, -(D/B)a, H=(C/AA+Y, -(C/A)G,
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Figure 1.3, Projections of the solution continua Comir oo as Comt e for (14) into A —p
parameter space in the casc (A, C, D >0, B <20).
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Figure 1.4. Projections of the solution continua o uosr Cuowr Gtk for (1.4) into A—pt
parameter space in the case (4, D>0, B, C<0, AD-BC>0).

@ppo. .4 INLO R? is given by

{H <(DIB)A+ Ym— (DIB)oy,
pn< (CIAA A+ Vm — (ClA)o,.

It is immediate from (1.18) that the projection of €122 into R?* does not
intersect {(A, ) A >0, = Ym}. (See Figure 1.5.)

All of the cases of (1.4) discussed sO far have the common feature that for any
fixed (A, i) the set {(u, v): (A, 1, 1, V) € Gy, +) 15 B bounded set in [Col0, 1)
IfA, D>0, B, C<0, and AD — BC =0, such is no longer the case. Witness that
@, must meet € when the parameters (4, 1) lie along the ray
i = (CIAA A+ v — (C/A)O, = (D/B)A+ Y — (D/B)0,. A= o, while Goums

(1.18)
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Figure 1.5. Projections of the solution continua €y, ., G0 G+ for (1.4) into A—p
parameter space in the case (4, D >0, B, C <0, AD-BC <0).

meets ‘6, ...+, when the parameters lie on the same line but with u Zy,,. These
rays have only the point (o, 7,,) in common. Hence, if for example A,> o0, is
fixed and, (A, u) is constrained to the line A = A,, the transition from €,.0.4 tO
%, m,+,+ occurs at the point (y, (D/B)Ay+ v, ~(D/B)a,) and moreover, the
projection of C,,, 4 4 into R? meets the I‘ine A=2A, only at the point
(Ao, (D/BY)Ay+ v, — (D]B)a,). Hence, {(u, v): (Ag, (D/B)Ay+ 7, —
(D/B)0o,, u, v) € G, +,+} is unbounded in [C([0, 1]]%. Additionally, if (A, i) is
constrained to the line A =A,, then €,,, . . does not meet Cy,, 4. Analogous
statements hold when p,> v, is fixed.

Example (1.4) indicates a wide variety of possible answers to the questions
raised earlier in this section. It is also valuable as it indicates the nature of the
bifurcation phenomena for (1.1) in general, as will be observed in the subsequent
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Fjgurc 1.6 S()l}ltions to ('1.1) lying on Corr Comron and €y .0 With n =3, m=2, v=-+, 0=-—.
I'hc arrows indicate the bifurcations among the continua.

sections of this asrticle. Namely, there is a curve in the A — pt plane along which a
transition occurs (in R?X (Cila, b])?) from a solution continuum 6,0, (u
components have n nodes, v components vanish identically) to a solution
continuum %6, ..r,0 (4 components have n nodes, v components have m nodes).
Moreover, there is a second curve in the A — u plane along which €, ..., meets a
solution continuum % .., (4 components vanish identically, v components have
m nodes). (See Figure 1.6.) For (1.4), the first transition occurs along the infinite
line segment (1.8) and the second along the infinite line segment (1.9). Two brief
remarks are in order. Firstly, the location of (1.8) and (1.9) and the subsequent
locus of €, ..o depend on the assumptions placed on the nonlinearity in (1.4).
Secondly, that (1.8) and (1.9) are infinite line segment in the case (1.4) is due to
the “nonlocal” nature of the nonlinearity. For (1.1) in general, we cannot expect
that the parametric curve for the transition from 4, o to G im.r0 (or from €y .«
10 G,y n.7.0) is linear.

2. Classes of assumptions on fand g

The examples of the previous section suggest three interesting classes of
assumptions to place on fand g. In the special case when u and v are positive and
may be interpreted as population densities, the resulting problems may justifiably
be classified as competitive, cooperative, and predatory. While these three classes
of assumptions on f and g by no means exhaust all possibilities, 1 believe that the
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analysis of the resulting problems gives substantial insight into the nature of the
solution structure to (1.1).
There are certain features common to all the problems considered in this
article. To note them, let 0<A, <A, <...,A,—> as n— o and O<pu,<p,<
« s My —> as m—> o be the sequences of eigenvalues to the problems

Lyw=2Aw in (a, b),
w(a) =0=w(b).
and
Lry=upy in{a,b),
y(@)=0=y(b),
respectively. Then there are corresponding sequences {w;}7., and {y};7=1 of
eigenfunctions with w; having i — 1 simple zeros in (a, b) and w}(a) >0 and ¥
having j — 1 simple zeros in (@, b) and y/(a) >0, for all i, j € Z*. Assume

(H1) (i) f(x,, 0)<0, if x,#0.
(i) g(0, x5) <0, if x, 0.

Then, forallne Z*, if .
Lyu=2Au+f(u, Yu in (a, b),
u(a)=0=u(b),
and « has n — I simple zeros in (a, b), then A> J,,. Likewise, for all m e Z* if
Lv=pv+g(0,v)v in(aq, b),
v(a) =0=uv(b),

and v has in — 1 simple zeros in (a, b), then p > p,),. Consequently, [4, Theorem
2.1] obtains and sets %, ,,. . as described in Section 1 exist. For most of the
remainder of this article, assume in addition

(H2) (i) For all neZ™, if A>4,, there are exactly two solutions to 2.1
having n —1 simple zeros in (a, b). These solutions lie along two unbounded
continua €, and %€, in R x Ci[a, b] emanating from {(A,, 0)}. The solutions on
€, are characterised by having a positive derivative at a, while those on €, have
a negative derivative at a.

(i) For all me Z™, if u > p,,, there are exactly two solutions to (2.2) having
m — 1 simple zeros in (a, b). These solutions lie along two unbounded continua
€y and €, in R x Cl[a, b] emanating from {(u,,, 0)}. The solutions on %}, are
characterised by having a positive derivative at a, while those on €, have a
negative derivative at a.

(2.1)

(2.2)

While assumption (H2) need not allways obtain, it is certainly not an un-
reasonably accompaniment to (H1). It is known to hold in a number of situations.
It is also the simplest assumption to make concerning the solutions to (2.1) and
(2.2), given (H1). Moreover, even when (H2) fails to hold, given (H1), it can
usually be replaced with the weaker.

(H2)" (i) For all ne Z", there is §, >0 so that for all A€ (4,, A, + d,), there
are exactly two solutions to (2.1) having n — 1 simple zeros in (a, b), one whose
derivative at a is positive and the other whose derivative at a is negative.
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(ii) For all m e Z*, there is 0,, >0 so that for all @ € (i, o + o,,), there are
exactly two solutions to (2.2) having m —1 simple zeros in (a, b), one whose
derivative at a is positive and the other whose derivative at a is negative.

Many of the results on €, 0.~ still hold when (H2) is replaced by (H2)', as will
be seen at the end of the article. '

At this point, the assumptions on fand g split into three classes: “competitive”,
“cooperative”, and “‘predatory”. In the “competitive” case, in addition to (H1)
and (H2) (or (H2)"), assume

(H3)

fler, x2) =0

Lll y 2.
g(xl,xz)§0} for all (x;, x,) eR

(H4) There are continuous functions /2, k: R — [0, =] so that
(i) |x,|>N(A) implies A + f(x,, x2) <0 forall x, € R;
(i) |vo| > k(p) implies p + g(xy, x5) <0 for all x, e R.

For the “cooperative” situation, in addition to (H1) and (H2), assume
(H5)

;g’ x(z)i Z(())} for all x;, x,e R — {0}.
(H6)
[(xy, x2) = —p(xy) +q(x2),
g(xy, x2) Er(x)) — s(x2),

where p, g, r, s: R— [0, ) are continuous functions satisfying:
(i) p(0)=q(0)=r(0)=s(0)=0;
(D) p(0), q(r), r(t), s(t) >0 if £ #0;
(i) p and s are strictly decreasing on (-, 0] and strictly increasing on [0, *);
(iv) There are , B € (0, 1) such that r(f) = ap(t) and q(f) = Ps(¢) for all re R.

The assumptions additional to (H1) and (H2) in the “predatory” case are a
blend of those for the “competitive” and “cooperative’” cases. In the “predatory”
case, assume (H1), (H2), and

(H7)
Flxy, x) 20 for all (x, x;) e R%

(H8) There is a continuous function j: R— [0, ) so that |x;|>j(A) implies
A+ f(xy, x2) <0 for all x,€R.

(H9)
g(x,;,00>0 forallx;eR — {0}.
(H10)

g(xy, x2) Sm(x,) —n(xy),



14 Robert Stephen Cantrell

where /m, n: R— [0, ) are continuous functions satisfying
(i) m©)=n(0)=0;
(ii) m(t), n(¢)>0if t#0;
(iii) n is strictly decreasing on (—o», 0] and strictly increasing on [0, o).

3. A priori bounds

In order to establish the a priori bounds on the [Cila, b]? norm of solutions
(u, v) that are needed in Section 4, it follows from the regularity theory of
differential equations and the structure of (1.1) that it suffices to estalish a priori
bounds on the [Cf[a, b]]* norm of solutions (4, v). The maximum principle is the
main tool for this purpose. In the “‘competitive” case, it follows from (H4) as in
(4] that if (1, v) solves (1.1) at (A, 1), then flull.=h() and [Ju|l.= k(n). The
following result holds:

Tueorem 3.1. Suppose that (H1)-(H4) are satisfied. Then if (A, p, u, v) satisfy
(1.1) with u having n — 1 simple zeros in (a, b) and v having m — 1 simple zeros in
(a, b), A> A, and u > p,,. Moreover, if Wis any bounded subset of {(A, p): A >
Awy 10>, }, there is a C(W) > 0 such that § (A, u, u, v) solves (1.1) with u having
n—1 simple zeros in (a, b), v having m —1 simple zeros in (a, b), and
(A, 1) e W, then

G, )l = leellzgan} < CW).

In the “‘cooperative™ case, the argument is more complicated. Suppose that
(H1), (H2), (H5), and (HG6) are met and that (4, 1, u, v) solves (1.1) with u and v
nonzero. Suppose further that A + ||g(v)||.>0 and that there is an Xp€(a, b)
with u(xo) >0 and p(u(xe)) > A + [|g(v)||., where P, g are as in (H6) and || ||.. is
the usual supremum norm. Then there is an open subinterval I of (a, b) such that
Yo€l, u(x)>0 and pu@x)>A+|lg)|l. for xe I, while u(x)=a*=
(])Iln,xl)”‘(/'t + lg(@)l-) on 81. From (1.1), it follows that on [

Li(u—a®)=@A+f(u, v))u —q,(x)a*
= (A +q@) —pl))u - g,(x)a*
= @A+ llg@)ll- = p())u ~ g (x)a

=0,

with u —a*=0 on 8I. The maximum principle implies that « =a* on J, a
contradiction. Consequently if (1, i, u, v) solves (1.1) with A + |lg(v)]]..> 0, then
for any x € (a, b) with u(x)>0, pu(x))=A+|lg@)|~.. By repeating essentially
the same argument, it follows that if (4, i, u, v) solves (1.1) with u and v
nonzero, then A+ |lg()ll.>0 and |[pu)||.=A + lg()ll-. Similarly, u+
lr(@)ll--> 0 and ||s()||.. = e + ||r()|].. Hence

WP @)l = Hr (@) + Uls)ll- = llg(W)]].) S A + . 3.1
Since r(1) = ap(t) and q(¢) = Bs(1) for all t e R, where @, B e(0, 1), (3.1) yields
(T=a) lI(p)ull. + (1= B) s S A +p. (3.2)
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As a result of (H6)(iii), a priori bounds on (u, v) are available as in the following
theorem:

Tusorem 3.2. Suppose that (H1), (H2), (H5), and (HO) are satisfied. Then if
(A, 1, u, v) satisfy (1.1) with u having n — 1 simple zeros in (a, b) and v having
m — 1 simple zeros in (a, b), A+ u>0. Moreover, if Wis any bounded subset of
(A, piA+pu> 0}, there isa C(W)>0 such that if (A, ¥, 1, V) solves (1.1) with u
having n — 1 simple zeros in (a, b), v having m — 1 simple zeros in (a, b) and
(A, p) e W, then NG, ) cpa o < CW).

Finally, consider the “predatory” case and suppose that (H1), (H2), and
(H7)-(H10) hold. Let (A, p, 1, v) solve (1.1) with u having n — 1 simple zeros
and v having m —1 simple zeros. Then from (H7) and (H8), A>4, and
il = j(A). Arguing as in the “‘cooperative” case, it follows from (H10) that
g+ lm@@))l->0 and lln(v)llxéu—l—ll(rn(u)n,,_. As a consequence, if /(d)=
max{m(t): | =j(A)}, then p > =), ()|} = e + 17 (A)s and the following
theorem: is established:

Tueorem 3.3. Suppose that (F1), (H2), and (H7)-(H10) are satisfied. Then if
(A, w, u, v) satisfy (1.1) with u having n — 1 simple zeros in (a, b) and v having
m—1 simple zeros in (a,b), A>A, and p=> —m(L), where 1 A)=
max{m(f): [t{| £j(A)}. Moreover, if W is any bounded subset of {(A, pn):A>
A,, o> —m(A)}, there is a C(W)>0 such that if (A, u, u, v) solves (1.1) with u
having n — 1 simple zeros in (a, b), v having m —1 simple zeros in (a, b), and
(A, ) € W, then ||(u, V) Feegyan < C(W)-

4. Main result

Assume that (H1) and (H2) hold. For n = 1,2,3,...ando=+, —, let U™(A)
be 0 if A=A, and the unique element of C}a, b] such that (4, U™°(A)) € €y if
A>A,. Likewise, for m =1, 2,3,...,and T=+, —, yrer(p) is 0 if 1 = o and
such that (i, V™ "(1)) € @x, if u > . Then 6,00 and %o, - are given by

{(A, u, U™(A),0): 2 € R, ueR} (4.1)
and
{(A, 1,0, V"T(u)): AR, p e R}, (4.2)
respectively. Next, forn=1,2,3,...,m=1,2,3,... and o=+, —, let uy?(4)
be the unique eigenvalue of
L,y —g(U™*(A), 0)y =py in(a,b),
y(a)=0=y(b),

admitting an eigenfunction with m — 1 simple zeros in (4, b). Then uy;°(A) is a
continuous function of AeR and a transition from %06 t0 @ 6,0« CAN OCCUT
only for parameter values along the curve p = oAy, A Z A,

I is not too difficult to see that in fact such a transition does occur. From 3]
and [4], (1.1) can be reformulated as

F=N@A, 1 ) =AQR, 7+ H, u, Z), (4.4)

(4.3)
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where Z = (z;, )" e [Cila, DIF, A(A, p): [Ci[a, b]P—[Cl]a, b is the compact
linear operator given by

Lifrrwee s e w0
AR, p)= Um™e(A) -—SI—{ (U™°(4), 0)) ' }
0 Ly Yu+g(Um(4,))}

and H(A, u, 2): [Cila, b]P— [Ci[a, b]]? is completely continuous with
<”H(A, i, 5)”) -0
I1Z1]

uniformly for (A, i) in compact subsets of R2. Then as in [3], (A, u, 2, z,) solves
(4.4) if and only if (A, u, z, + U""(R), z;) solves (1.1). Moreover, bifurcation
[rom the trivial solution in (4.4) is possible only if (A, 1) € 2"°, where

2= {(A, ) um(A) for some LeR, m e AR
U{A, n): A=A, k=n}.
From |4, Section 2] and (H1), there is a 1> A, so that

I- Lr'{x +[(U™(R), 0) + U™ (R) -gif (U™ h), 0)}

lim
HEH—0

U

is an invertible operator. It then follows as in [3, Section. 2] that the
Leray—Schauder indices

ind{ — A(%, ue(%) £ 6), 0)

are of opposite sigsns for § >0 and sufficiently small. In fact, the simplicity of

n,a

1tm(AT as an eigenvalue of (4.3) implies
dim(ker((I — A(4, 1;;°(1)))%) = dim(ker(/ — A(%, A =1 (4.5

Consequently, ind{l — N(4, u2°(%) + 6, ), 0} #=ind{I — N(Z, p1i°(R) - 6, ), 0}
for 6 >0 and sufficiently small. The homotopy invariance of the Leray—Schauder
degree and the Alexander—Antman Bifurcation theorem [1] imply a transition to
a connected set € of nontrivial solutions to (4.4) which is locally compact and of
dimension 22 at every pont as parameter values cross the curve to=pun(A),
A>A4,. Moreover, if I'(¢) is any smooth one-dimensional restriction of the
parameters (A4, 1) which crosses p = p?;°(A), 1> A, at say (X, u25°(1)) and which
satisfies |I'(£)] — o as f—> too, then the restriction of € to I' is either unbounded
or meets the trivial solutions to (4.4) at a parameter value other than (4, uiho(A)).

In fact, much more can be determined. Suppose that (A, u25°(1)) satisfies (4.5)
and that ' 2™ is a discrete set. Then [15, Lemma 1.2} and [11, Theorem 2] may
be adapted to the situation of (4.4). Consequently, as solutions (A, u,, z,, Z,)
emerge from (4, uf°(1), 0, 0) along I, z, and z, must be such that z, + uo(i)
has n — 1 simple zeros in (a, b) and z, has m — 1 simple zeros in (a, b). The sign
of (z;+ U™?(A))'(a) is o, whereas zj(a) can be positive or negative. Moreover,
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the component & of the closure of nontrivial solutions to (4.4) (for parameter
values along I') emanating from (4, uno(X), 0, 0) can be expressed as At UL,
with s+ and &/~ subcontinua of & so that the nontrivial solutions (A, i, z;, z,) to
(4.4) in s£*(sf”, respectively) near (A, u5°(A), 0,0) have the property that
z,+ U™°(A) has n —1 simple zeros in (a, b), sgn((z; + U™°(A)) (a)) =0, z has
m — 1 simple zeros in (a, b) and sgn zy(a) = + (—, respectively). Moreover, for a
sufficiently small neighbourhood B((Z, ni°(%), 0, 0); 8) of (4, ume(dy, 0, 0),
A+ Nsf~ UB(A, ni°(A), 0,0); 8) = {(4, u°(A), 0,0} and either o¢* and o/~
are both unbounded or & * and &~ meet outside B((%, u°(2), 0, 0); 8).

Assume now that (H5) and (H6) hold in addition to (H1) and (H2). For T',
require additionally that I' cross the cruves {u = p5°(A): AZA,} and {4 =p,
exactly once at A= I and A=A*>A,, respectively, and that as r— o0,
(A, w) = ['(¢t) implies that A +p <0. It follows that &/ and &~ exit the nodal sets
in which they lie near (4, pho(1), 0, 0). Otherwise A+ and &~ do not intersect
and hence are both unbounded. Theorem 3.2 implies that &% and &~ can
become only if the parameter values along I become unbounded. Since A + u <0
if (A, ) = T(¢) for |{| sufficiently large, there are no solutions (4, g, z, z,) to (4.4)
with both z,+ U™°(A) and z, nonzero as parameter values along I' become
unbounded. This contradiction shows that &/ + and &~ do exit the nodal sets in
which they emanate from (1, p5°(2), 0, 0). Consequently, there are TR T T
so that (Ur+u*), wh, —Ume@Qu (), Vi) e and (407, i
—UmAr (), VT (nT)) e £, where for (>, An?(u) is the unique
eigenvalue of

Lyw —f(0, V™o(u))w=Aw in (a, b),
w(a) =0=w(b),

admitting an eigenfunction with n—1 simple zeros in (a, b). (Since (H5) and
(H6) hold, Al+(u*), Azn~(w™) <A, and so U™(u")) =0 and U@ (7)) =
0. If (H5) and (H6) are replaced with (H3) and (H4), such is not the case.) It is
now easy to observe that (A", fh., —U™(A*), 0)e £* N~ and since A" >4,
(= U™(A*), 0) # (0, 0). Hence the portions of &£* and &/~ which are contained in
the indicated nodal sets are in the same component of the nontrivial solutions to
(4.4). A similar analysis can be made regarding the transition from %, . to

€,y.m, .- S parameter values cross the curve A = A7%(w), f > p,,,, where AnT(u) is
given by (4.6). The main result of this article can now be given.

Tugorem 4.1. Consider (1.1) and assume that (H1)-(H2) and one of the

following sets of additional conditions hold:
(i) (H3)-(H4),

(i) (H5)-(H6),

(iii) (H7)-(H10).
Then there is a connected set €, .. < R* X [Cila, b]J? os solutions to (1.1) such
that

(@) G,,.m.0.c has dimension =2 at every point;

(0) Gpm.o.r is locally compact;

(¢) (A, i, U, V) € Gy ., implies that u has n — 1 simple zeros in (a, b), v has
m — 1 simple zeros in (a, b), sgnu'(a) =0 and sgnv'(a)=T1;

(4.6)
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(d) 6,0 links C.i.0.0 10 €1y, Where €..0,c and €, ,, . are given by (4.1) and
(4.2), respectively. In particular, the projection of G, ... includes all points
(A, 1) contained in the region bounded by the curves p=u(1), AZ2, and
A=A0"(1), u=p, where i "(A) and Ap"S(u) are given by (4.3) and (4.6),
respectively.

Proof. In the case where (ii) is assumed, the theorem follows from combining
the observations preceding the theorem with [1, Corollary 2.47]. If (i) or (iii) is
assumed in place of (ii), slight modifications of the argument are needed, and
these are omitted.

REmARks. (i) If (H2) is replaced with (H2)’ and R? x [Cila, b]J? is replaced
with {AeR:A <A, +8,} X [Clla, b]P, then a result similar to Theorem 4.1
follows by much the same analysis, providing a link between €, , and Go, .- Via
branches of solutions (A, u, u, v) to (1.1) where u has n—1 simple zeros in
(a, b), v has m — 1 simple zeros in (a, b), sgnu'(a) = o and sgnv'(a) = 7.

(ii) It should be noted that in the proof of Theorem 4.1 in none of the three
cases is the curve I identically equal to the line A = 1. In the “competitive” case
(i), with the additional assumption L, = L,, it is possible to place conditions on f
and g so that the bifurcation theoretic arguments of this section may be used to
see that 4, , . is linked to Co.m,x via 6, ,,, 0., if the parameters (A, 1) are restricted
to the line A=1>41, if m=n and that G,.0.0 18 linked to Co,m,¢ via G, .0.. if the
parameters (A, u) are restricted to the line u = ji > W if n = m. See [4, Section 3
and 4]. The “cooperative” and “predatory™ cases are qualitatively different. In
particular, note that in the “cooperative’ case Un'(A)<p,, for-all A>2, and
Adt () <A, for all u>p,,. Hence, for example, if 4> A, is fixed and (4, 1) are
restricted to lie along the line A = 1, then @,.m.0.- does not link to Co.m,e- Gy
must be unbounded for parameter values lying along this line, and the a priori
estimates of Section 3 imply that if p > u°(A), then there is (1, v) € [Cla, b]]?
so that (4, u, u, V) € C, 0. A similar statement is true if > p,, is fixed. These
observations provide an alternative way to see that in the “cooperative” case (ii),
the set {(A, u): A>4,, u> .} is contained in the projection of 4,,, .. into R?.
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